MATH1A - CORRIGÉ BREF DE L'EXAMEN (2h)

Les trois problèmes sont indépendants, vous pouvez les traiter dans l'ordre que vous souhaitez.

I (8 pts)

On considère la fonction $f: x \mapsto \exp\left(\frac{1}{x^2}\right) \sqrt{x^2 + 4}$.

- 1. (1 pt) Donner le domaine de définition de f. $D_f = \mathbb{R}^*$.
- 2. (1 pt) Etudier la parité de f. f est paire.
- 3. (1 pt) Calculer la dérivée de f. $f'(x) = \frac{(x-2)(x+2)(x^2+2)e^{\frac{1}{x^2}}}{x^3\sqrt{x^2+4}}$
- 4. (2 pts) Etudier les variations de f (on pourra réduire le domaine d'étude en utilisant les symétries éventuelles du graphe Γ_f de f). Sur \mathbb{R}_+^* , f décroît de $-\infty$ jusqu'à $f(2) = \exp(1/4) 2\sqrt{2}$, puis croît jusqu'à $+\infty$.
- 5. (2 pts) Calculer le développement généralisé de f(x) en $+\infty$ à l'ordre 1. $f(x) = x + \frac{3}{x} + o(\frac{1}{x})$ en $+\infty$
- 6. (1 pt) En déduire l'équation d'une droite asymptote à Γ_f au voisinage de $+\infty$, et la position de Γ_f par rapport à cette asymptote. y = x, Γ_f au-dessus de l'asymptote.

II (8 pts)

On considère la fonction $f: x \mapsto \frac{x+3}{x^2+2x+2}$.

- 1. (3 pts) Calculer le développement limité de f en 0 à l'ordre 2 . $f(x) = \frac{3}{2} x + \frac{x^2}{4} + o(x^2)$.
- 2. (1 pt) En déduire l'équation de la tangente au graphe de f à l'origine, et la position de la courbe par rapport à cette tangente au voisinage de ce point. $y = -x + \frac{3}{2}$, Γ_f au-dessus de la tangente.
- 3. (3 pts) Calculer les primitives de f. $\frac{\ln(x^2 + 2x + 2)}{2} + 2\arctan(x + 1) + C$, $C \in \mathbb{R}$.
- 4. (1 pt) En déduire la surface $S = \int_0^1 f(x) dx$. $S = \frac{1}{2} \ln \left(\frac{5}{2} \right) + 2 \arctan (2) \frac{\pi}{2}$.

III (5 pts)

- 1. (2 pts) Calculer les primitives de $x \mapsto \cos^2(x)$ (on pourra linéariser l'expression, ou exprimer $\cos(x)$ à l'aide d'une exponentielle complexe). $\int \cos^2(x) dx = \frac{1}{4} (2x + \sin(2x)) + C, C \in \mathbb{R}.$
- 2. (3 pts) En déduire les primitives de $x \mapsto x \cos^2(x)$ (on pourra procéder par une intégration par parties). $\int x \cos^2(x) dx = \frac{1}{8} (2x^2 + \cos(2x) + 2x \sin(2x)) + C$, $C \in \mathbb{R}$.