CALCUL DIFFERENTIEL - EXAMEN CORRIGÉ

I (9 pts)

Notation. Pour toute application $g: \mathbb{R}^n \to \mathbb{R}^n$ on note $g^0 = \mathrm{Id}_{\mathbb{R}^n}$ et, pour tout $p \in \mathbb{N}^*$, on note $g^p = g \circ \cdots \circ g$ (p fois).

Soient $a \in \mathbb{R}^n$ et f un difféomorphisme de \mathbb{R}^n sur \mathbb{R}^n . On suppose que f(a) = a et qu'il existe $q \in \mathbb{N}^*$ tel que $f^q = \mathrm{Id}_{\mathbb{R}^n}$. On note $L = \mathrm{d}_a f \in \mathcal{L}(\mathbb{R}^n)$ et $u = \sum_{k=1}^q \left(L^{-k} \circ f^k \right) : \mathbb{R}^n \to \mathbb{R}^n$.

1. (2 pts) Pour tout $k \in \mathbb{N}$, montrer par récurrence que $d_a(f^k) = L^k$. Déduire des hypothèses que $L^q = \mathrm{Id}_{\mathbb{R}^n}$. Si k = 0, on a $d_a(f^0) = d_a \mathrm{Id}_{\mathbb{R}^n} = \mathrm{Id}_{\mathbb{R}^n} = L^0$. Si la propriété est supposée vraie pour $k \in \mathbb{N}$, on en déduit, en utilisant que f(a) = a (et donc $f^k(a) = a$ pour tout k):

$$d_a\left(f^{k+1}\right) = d_a\left(f \circ f^k\right) = d_{f^k(a)}f \circ d_a\left(f^k\right) = d_af \circ L^k = L \circ L^k = L^{k+1},$$

ce qui démontre l'affirmation.

Par conséquent: $L^q = d_a(f^q) = d_a(\mathrm{Id}_{\mathbb{R}^n}) = \mathrm{Id}_{\mathbb{R}^n}$.

- 2. (1 pt) En déduire que u est un difféomorphisme local au point a. On a, en utilisant toujours $f^k(a) = a$ pour tout $k \in \mathbb{N}$: $d_a u = d_a \left(\sum_{k=1}^q \left(L^{-k} \circ f^k\right)\right) = \sum_{k=1}^q d_a \left(L^{-k} \circ f^k\right) = \sum_{k=1}^q \left(d_a \left(L^{-k}\right) \circ d_a \left(f^k\right)\right) = \sum_{k=1}^q \left(L^{-k} \circ L^k\right) = q \cdot \operatorname{Id}_{\mathbb{R}^n}$, qui est une application linéaire inversible. Le théorème d'inversion locale garantit alors que u est un difféomorphisme local au point a.
- 3. (1 pt) Montrer que $u \circ f = L \circ u$. On a:

$$u \circ f = \sum_{k=1}^{q} (L^{-k} \circ f^{k}) \circ f = \sum_{k=1}^{q} (L^{-k} \circ f^{k+1}) = \sum_{k=1}^{q} L \circ (L^{-(k+1)} \circ f^{k+1})$$

$$= L \circ \sum_{k=1}^{q} (L^{-(k+1)} \circ f^{k+1}) = L \circ \left(\left(\sum_{k=2}^{q} L^{-k} \circ f^{k} \right) + L^{-(q+1)} \circ f^{-(q+1)} \right)$$

$$= L \circ \left(\left(\sum_{k=2}^{q} L^{-k} \circ f^{k} \right) + L^{-1} \circ f^{-1} \right) \text{ (car } L^{q} = \text{Id}_{\mathbb{R}^{n}} \text{ et } f^{q} = \text{Id}_{\mathbb{R}^{n}} \right)$$

$$= L \circ u,$$

ce qui démontre le résultat.

- 4. (1 pt) Soit $U \subseteq \mathbb{R}^n$ un voisinage de a tel que $u: U \to u(U)$ soit un difféomorphisme. Montrer que $b \in U$ est un point fixe de f si et seulement si $u(b) \in u(U)$ est un point fixe de f. Si f est un point fixe de f, on a : f (f (f) f) f (f) f (f) f) f (f) f0 est un point fixe de f0. Réciproquement, si f0 est un point fixe de f0, on a : f0 est un point fixe de f0, on a : f0 est un point fixe de f0. Réciproquement, si f0 est un point fixe de f0 est un point fixe de f0.
- 5. (2 pts) Déduire des questions précédentes que l'ensemble des points fixes de f est une sous-variété de \mathbb{R}^n . On désigne par S l'ensemble des points fixes de f. Soient $a \in S$ et $L = \mathrm{d}_a f$. On désigne par M l'ensemble des points fixes de L. En utilisant les notations et résultats précédents, il existe un difféomorphisme $u \colon U \to u(U)$ défini sur un voisinage U du point a tel que $u(S \cap U) = M \cap u(U)$. Or M est un sous-espace vectoriel, et donc une sous-variété de \mathbb{R}^n . On en déduit que S est une sous-variété de \mathbb{R}^n au voisinage du point a. En effet, si $G \colon V \subseteq u(U) \subseteq \mathbb{R}^n \to \mathbb{R}^q$ est-une application de rang q telle que $M \cap V = G^{-1}(0) \cap V$, alors $G \circ u$ est une application de rang q au point a (car u est un difféomorphisme) telle que $S \cap u^{-1}(V) = \left((G \circ u)^{-1}(0) \right) \cap u^{-1}(V)$.

Puisque a est un point quelconque de S, il en résulte que S est une sous-variété de \mathbb{R}^n .

6. (2 pts) Soit $g: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto g(x,y) = (x,y+y^3-x^2)$. Montrer que g est un difféomorphisme de \mathbb{R}^2 sur \mathbb{R}^2 . En déduire que le résultat de la question 5. n'est plus nécessairement valide si on omet l'hypothèse $f^q = \text{Id}$. On constate que le déterminant jacobien de g en un point $(x,y) \in \mathbb{R}^2$ égale $1+3y^2 \neq 0$, donc f est un difféomorphisme local en chaque point. Soit $(u,v) \in \mathbb{R}^2$. Montrons que (u,v) admet un antécedant unique $(x,y) \in \mathbb{R}^2$. On a évidemment x = u, d'où l'on déduit que $y^3 + y = v + u^2$. Or $h: y \mapsto y^3 + y$ est un polynôme de degré impair dont la dérivée est en tout point strictement positive, donc $h: \mathbb{R} \to \mathbb{R}$ est une surjection. Il existe un réel unique y tel que h(y) = v - u.

On en déduit que g est surjective, et donc est un difféomorphisme de \mathbb{R}^2 sur \mathbb{R}^2 .

Il est clair que l'ensemble des points fixes de g est $S = \{(x,y) \in \mathbb{R}^2 : y^3 - x^2 = 0\}$, qui n'est pas une sous-variété au point (0,0) (bien que (0,0) soit un point fixe de g). C'est donc bien l'hypothèse "g périodique" qui est mise en défaut.

II (5 pts)

On considère l'équation

$$(E) \quad \sin(tx) + \cos(tx) = x.$$

- 1. (1 pt) Montrer que $|\cos u \sin u| \le \sqrt{2}$, $\forall u \in \mathbb{R}$. Les extrema de la fonction $u \mapsto \cos u \sin u$ sont atteints aux points $\frac{3\pi}{4} + k\pi$, $k \in \mathbb{Z}$, en lesquels cette fonction vaut $\pm \sqrt{2}$.
- 2. (1 pt) En déduire que pour tout réel t tel que $|t| < 1/\sqrt{2}$ l'équation (E) admet une unique solution $x = \varphi(t)$. Pour $t \in \left] -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right[$ fixé, on considère la fonction $g \colon \mathbb{R} \to \mathbb{R}$ définie par $g(x) = \sin(tx) + \cos(tx) x$. On voit que $\lim_{x \to -\infty} = +\infty$ et $\lim_{x \to +\infty} = -\infty$. De plus $g'(x) = t(\cos(tx) \sin(tx)) 1$. Mais, puisque $|t| < 1/\sqrt{2}$ et $|\cos(tx) \sin(tx)| < \sqrt{2}$, cette dérivée ne s'annule en aucun point. Ainsi la fonction g est une bijection de \mathbb{R} sur \mathbb{R} . Il existe donc un unique point, noté $\varphi(t)$, en lequel g s'annule.
- 3. (1 pt) Montrer que φ est de classe \mathcal{C}^2 . Il résulte du théorème des fonctions implicites appliqué en chaque point $(t, \varphi(t)), t \in \left] -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right[$, que la fonction φ est de classe \mathcal{C}^1 sur $\left] -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right[$. On a de plus :

$$\sin(t\varphi(t)) + \cos(t\varphi(t)) - \varphi(t) = 0 \quad (*)$$

sur cet intervalle. En dérivant cette expression, on obtient :

$$\cos(t\varphi(t))(\varphi(t) + t\varphi'(t)) - \sin(t\varphi(t))(\varphi(t) + t\varphi'(t)) - \varphi'(t) = 0, \text{ et donc}:$$

$$\varphi'(t) = \frac{-\cos(t\varphi(t))\varphi(t) + \sin(t\varphi(t))\varphi(t)}{t\cos(t\varphi(t)) - t\sin(t\varphi(t)) - 1}.$$

On voit que φ' est une composée de fonctions de classe \mathcal{C}^1 : φ' est de classe \mathcal{C}^1 , donc φ est de classe \mathcal{C}^2 .

- 4. (2 pts) Donner un développement limité de φ en 0 à l'ordre 2. En dérivant la relation (*), on calcule les dérivées d'ordre inférieur ou égal à 2 en t=0. On a :
 - (a) $\cos(0) = \varphi(0)$, donc $\varphi(0) = 1$.
 - (b) $\cos(t\varphi(t))(\varphi(t) + t\varphi'(t)) \sin(t\varphi(t))(\varphi(t) + t\varphi'(t)) \varphi'(t) = 0$, donc avec $t = 0: 1 \varphi'(0) = 0$, donc $\varphi'(0) = 1$.
 - (c) En dérivant (*) deux fois et en posant t=0, on trouve donc $\varphi''(0)=1$. Le développement de Taylor de φ en 0 à l'ordre 2 est donc $\varphi(t)=1+t+\frac{t^2}{2}+o\left(t^2\right)$.

Soit
$$C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 - xy - 1 = 0\}.$$

- 1. (1 pt) Montrer que \mathcal{C} est une sous-variété de \mathbb{R}^2 . On peut remarquer que \mathcal{C} est une ellipse, donc une sous-variété de \mathbb{R}^2 . Sinon, on pose $f(x,y) = x^2 + y^2 xy 1$, et donc $d_{(x,y)}f = (2x y) dx + (2y x) dy$. Cette différentielle ne s'annule qu'au point (0,0), qui n'appartient pas à \mathcal{C} . Donc \mathcal{C} est une courbe.
- 2. (1 pt) Déterminer l'équation du plan tangent à \mathcal{C} au point (1,0). On a $d_{(1,0)}f = 2dx dy$, donc la droite tangente $T_{(1,0)}\mathcal{C}$ a pour équation 2(x-1)-y=0.

3. (1 pt) Donner une coordonnée rectifiante pour C au voisinage de ce point. Les deux composantes de $d_{(1,0)}f$ ne sont pas nulles, donc on peut prendre

$$\varphi: (x,y) \mapsto (x, x^2 + y^2 - xy - 1).$$

- 4. (1 pt) Déterminer les points critiques de la fonction $g: (x,y) \mapsto x^2 + y^2$ en restriction à \mathcal{C} . En un point $(x,y) \in \mathbb{R}^2$, $d_{(x,y)}g$ est un multiple de $d_{(x,y)}f$ si et seulement si (x-y)(x+y)=0, c'est à dire si $y=\pm x$. Il y a donc quatre points critiques de $g|_{\mathcal{C}}: D=(1,1), C=(-1,-1), B=(\sqrt{3}/3,-\sqrt{3}/3)$ et $A=(-\sqrt{3}/3,\sqrt{3}/3)$.
- 5. (2 pts) Donner la nature de ces points critiques. La fonction g atteint sur le compact C son maximum et son minimum en des points qui sont des points critiques de $g|_{C}$. Or on a : g(A) = g(B) = 2/3 et g(C) = g(D) = 2. Donc C et D sont des maxima de $g|_{C}$, alors que A et B sont des minima de $g|_{C}$.

