L3 - Calcul différentiel Inégalités de Cauchy-Schwarz et de Hölder

Théorème (Inégalités de Cauchy-Schwarz et de Hölder pour des nombres réels). On considère deux collections (x_1, \ldots, x_n) et (y_1, \ldots, y_n) de nombres réels.

1. On a l'inégalité de Cauch-Schwarz :

$$\sum_{k=1}^{n} |x_k y_k| \le \left(\sum_{k=1}^{n} x_k^2\right)^{1/2} \left(\sum_{k=1}^{n} y_k^2\right)^{1/2}.$$

2. Soient $p, q \in [1, +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. On a l'inégalité de Hölder :

$$\sum_{k=1}^{n} |x_k y_k| \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} \left(\sum_{i=1}^{q} |x_k|^q\right)^{1/q}.$$

Démonstration. Dans un premier temps on rappelle que la fonction ln est *concave* : en effet, pour x > 0, on a $\ln''(x) = -\frac{1}{x^2} < 0$. Cela implique que pour tous x, y > 0 et tous réels $\lambda, \mu \ge 0$ tels que $\lambda + \mu = 1$, on a $f(\lambda x + \mu y) \ge \lambda f(x) + \mu f(y)$ (autrement dit, pour tout réel c compris entre c et c v, la valeur de c est supérieure ou égale à l'ordonnée du point d'abscisse c sur le segment qui joint les points les points c (c) et c (c).

1. Donc, en appliquant cette inégalité de concavité à $\lambda = \frac{1}{p}$ et $\mu = \frac{1}{q}$, on a, pour tous x, y > 0, on a :

$$\ln\left(\frac{x^p}{p} + \frac{y^q}{q}\right) \ge \frac{1}{p}\ln\left(x^p\right) + \frac{1}{q}\ln\left(y^q\right) = \ln\left(xy\right),$$

et donc:

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}.$$

Ensuite se place dans un cas particulier : on suppose que $\sum_{k=1}^{n} |x_k|^p = \sum_{k=1}^{p} |y_k|^q = 1$. D'après ce qu'on vient de montrer, on a, pour tout $k = 1, \ldots, n$:

$$x_k y_k \le \frac{x_k^p}{p} + \frac{y_k^q}{q},$$

et donc, en sommant sur k = 1, ..., n, on obtient :

$$\sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x_k|^p}{p} + \sum_{k=1}^{n} \frac{|y_k|^q}{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

On conclut dans le cas général, en appliquant le cas particulier aux collections :

$$x'_{k} = \frac{x_{k}}{\sum_{k=1}^{n} |x_{k}|^{p}} \text{ et } y'_{k} = \frac{y_{k}}{\sum_{k=1}^{n} |y_{k}|^{q}}.$$